Summarize a region using regional principal components
Source:R/compute_regional_pcs.R
summarize_region.Rd
Summarize a region using regional principal components
Arguments
- region
String; name of region being processed
- region_map
Data frame; Mapping of CpGs to regions, column 1 should be regions, column 2 should be CpGs with the same names as the rows of meth
- meth
Data frame or matrix; Methylation values to summarize; rows=CpGs, columns=samples
- pc_method
String; indicating the method for estimating dimension; "gd"=Gavish-Donoho (default), "mp"=Marchenko-Pastur
- verbose
Boolean; print output statements
Examples
# Create the region map with just one region containing 10 CpGs
region_map <- data.frame(region_id = rep(1, 10), cpg_id = seq(1, 10))
# Create methylation data frame
set.seed(123)
meth <- as.data.frame(matrix(runif(10 * 20, min = 0, max = 1), nrow = 10))
rownames(meth) <- seq(1, 10)
# Call the function
summarize_region(1, region_map, meth, 'gd')
#> $sig_pcs
#> PC1
#> V1 -0.564912548
#> V2 0.715951191
#> V3 -0.336531053
#> V4 -0.058331274
#> V5 0.470009961
#> V6 0.004381512
#> V7 -0.254467804
#> V8 0.127777677
#> V9 -0.720377570
#> V10 0.062732873
#> V11 -0.415496705
#> V12 -0.508541629
#> V13 0.850919298
#> V14 -0.589314206
#> V15 0.644142819
#> V16 0.276779506
#> V17 0.149794967
#> V18 -0.100766203
#> V19 0.236932180
#> V20 0.009317009
#>
#> $percent_var
#> PC1
#> percent_variance_explained 0.2617874
#>
#> $loadings
#> PC1
#> 1 0.02704484
#> 2 -0.16219089
#> 3 -0.04079215
#> 4 -0.46213734
#> 5 -0.17035293
#> 6 0.11151863
#> 7 -0.41946509
#> 8 -0.55109199
#> 9 -0.33254661
#> 10 0.35500796
#>
#> $est_dim
#> [1] 1
#>
#> $num_cpgs
#> [1] 10
#>
#> $region
#> [1] 1
#>